Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.805
Filtrar
1.
J Gastrointest Surg ; 28(4): 381-388, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583887

RESUMO

BACKGROUND: Among bariatric techniques, sleeve gastrectomy (SG) stands out owing to its efficiency. The role of the stomach as a secretory organ of many substances, such as gastrin, related to insulin secretion is well known. Gastrin induces insulin release in isolated pancreatic islets, limiting somatostatin-14 intraislet release, and has been associated with blood glucose level improvement in diabetic models after SG. SG involves gastric resection along the greater curvature. This study aimed to determine the role of gastrin in glucose metabolism improvement after SG with the aid of the gastrin antagonist netazepide. METHODS: In 12 sham-operated, 12 SG-operated, and 12 SG-operated/netazepide-treated Wistar rats, we compared medium- and long-term plasma insulin, oral glucose tolerance test (OGTT) results, and plasma gastrin levels. In addition, gastrin expression was assessed in the gastric remnant, and the beta-cell mass was measured. RESULTS: SG induced a medium-term elevation of the insulin response and plasma gastrin levels without modification of the OGTT results. However, long-term depletion of the insulin response with elevated OGTT areas under the curve and plasma gastrin levels appeared after SG. Netazepide prevented the SG effect on these parameters. Gastrin tissue expression was greater in SG animals than in SG/netazepide-treated or control animals. The beta-cell mass was lower in the SG group than in the control or SG/netazepide group. CONCLUSION: Gastrin plays a central role in glucose improvement after SG. It stimulates a medium-term strong insulin response but also causes long-term beta-cell mass depletion and a loss of insulin response. These effects are prevented by gastrin antagonists such as netazepide.


Assuntos
Benzodiazepinonas , Diabetes Mellitus Tipo 2 , Gastrinas , Compostos de Fenilureia , Ratos , Animais , Gastrinas/metabolismo , Ratos Wistar , Glucose/metabolismo , Insulina , Gastrectomia/métodos , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/cirurgia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38644094

RESUMO

The pandemic scale of diabetes mellitus is alarming, its complications remain devastating, and current treatments still pose a major burden on those affected and on the healthcare system as a whole. As the disease emanates from the destruction or dysfunction of insulin-producing pancreatic ß-cells, a real cure requires their restoration and protection. An attractive strategy is to regenerate ß-cells directly within the pancreas; however, while several approaches for ß-cell regeneration have been proposed in the past, clinical translation has proven challenging. This review scrutinizes recent findings in ß-cell regeneration and discusses their potential clinical implementation. Hereby, we aim to delineate a path for innovative, targeted therapies to help shift from 'caring for' to 'curing' diabetes.

3.
Nutrients ; 16(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38613075

RESUMO

(1) Background: Vitamin D supplementation after type 1 diabetes mellitus (T1DM) onset has led to conflicting results on beta-cell preservation. Aim: This paper presents a systematic review to verify whether randomized prospective controlled trials (RCTs) demonstrate that improved vitamin D status confers protection on T1DM. (2) Methods: A systematic review was conducted up until 18 January 2024 according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, searching MEDLINE, MEDLINE In-Process, Embase, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials, using keywords "vitamin D", "type 1 diabetes", and "children". (3) Results: Following the above-mentioned search process, 408 articles in PubMed and 791 in Embase met inclusion criteria. After removing duplicates, 471 articles remained. After exclusion criteria, 11 RCTs remained. Because of major heterogeneity in design and outcomes, no meta-analyses were conducted, allowing only for qualitative analyses. There was no strong evidence that vitamin D supplementation has lasting effects on beta-cell preservation or glycemic control in new-onset T1DM. (4) Conclusions: More rigorous, larger studies are needed to demonstrate whether vitamin D improves beta-cell preservation or glycemic control in new-onset T1DM. Because T1DM may cause osteopenia, it is advisable that patients with new onset T1DM have adequate vitamin D stores.


Assuntos
Diabetes Mellitus Tipo 1 , Insulinas , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Estudos Prospectivos , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Ensaios Clínicos como Assunto
4.
J Theor Biol ; 587: 111822, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38589006

RESUMO

Obesity and diabetes are a progressively more and more deleterious hallmark of modern, well fed societies. In order to study the potential impact of strategies designed to obviate the pathological consequences of detrimental lifestyles, a model for the development of Type 2 diabetes geared towards large population simulations would be useful. The present work introduces such a model, representing in simplified fashion the interplay between average glycemia, average insulinemia and functional beta-cell mass, and incorporating the effects of excess food intake or, conversely, of physical activity levels. Qualitative properties of the model are formally established and simulations are shown as examples of its use.

5.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612880

RESUMO

Islets of Langerhans are anatomically dispersed within the pancreas and exhibit regulatory coordination between islets in response to nutritional and inflammatory stimuli. However, within individual islets, there is also multi-faceted coordination of function between individual beta-cells, and between beta-cells and other endocrine and vascular cell types. This is mediated partly through circulatory feedback of the major secreted hormones, insulin and glucagon, but also by autocrine and paracrine actions within the islet by a range of other secreted products, including somatostatin, urocortin 3, serotonin, glucagon-like peptide-1, acetylcholine, and ghrelin. Their availability can be modulated within the islet by pericyte-mediated regulation of microvascular blood flow. Within the islet, both endocrine progenitor cells and the ability of endocrine cells to trans-differentiate between phenotypes can alter endocrine cell mass to adapt to changed metabolic circumstances, regulated by the within-islet trophic environment. Optimal islet function is precariously balanced due to the high metabolic rate required by beta-cells to synthesize and secrete insulin, and they are susceptible to oxidative and endoplasmic reticular stress in the face of high metabolic demand. Resulting changes in paracrine dynamics within the islets can contribute to the emergence of Types 1, 2 and gestational diabetes.


Assuntos
Diabetes Gestacional , Ilhotas Pancreáticas , Feminino , Humanos , Gravidez , Insulina , Comunicação , Pâncreas , Insulina Regular Humana
6.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38578954

RESUMO

In the classical insulin target tissues of liver, muscle, and adipose tissue, chronically elevated levels of free fatty acids (FFA) impair insulin signaling. Insulin signaling molecules are also present in ß-cells where they play a role in ß-cell function. Therefore, inhibition of the insulin/insulin-like growth factor 1 pathway may be involved in fat-induced ß-cell dysfunction. To address the role of ß-cell insulin resistance in FFA-induced ß-cell dysfunction we co-infused bisperoxovanadate (BPV) with oleate or olive oil for 48 hours in rats. BPV, a tyrosine phosphatase inhibitor, acts as an insulin mimetic and is devoid of any antioxidant effect that could prevent ß-cell dysfunction, unlike most insulin sensitizers. Following fat infusion, rats either underwent hyperglycemic clamps for assessment of ß-cell function in vivo or islets were isolated for ex vivo assessment of glucose-stimulated insulin secretion (GSIS). We also incubated islets with oleate or palmitate and BPV for in vitro assessment of GSIS and Akt (protein kinase B) phosphorylation. Next, mice with ß-cell specific deletion of PTEN (phosphatase and tensin homolog; negative regulator of insulin signaling) and littermate controls were infused with oleate for 48 hours, followed by hyperglycemic clamps or ex vivo evaluation of GSIS. In rat experiments, BPV protected against fat-induced impairment of ß-cell function in vivo, ex vivo, and in vitro. In mice, ß-cell specific deletion of PTEN protected against oleate-induced ß-cell dysfunction in vivo and ex vivo. These data support the hypothesis that ß-cell insulin resistance plays a causal role in FFA-induced ß-cell dysfunction.


Assuntos
Resistência à Insulina , Células Secretoras de Insulina , PTEN Fosfo-Hidrolase , Animais , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ratos , Camundongos , Masculino , PTEN Fosfo-Hidrolase/metabolismo , Ácido Oleico/farmacologia , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Secreção de Insulina/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Ratos Sprague-Dawley
7.
Biofactors ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635341

RESUMO

Pancreatic polypeptide (PP) is a postprandial hormone secreted from pancreatic islets that activates neuropeptide Y4 receptors (NPY4Rs). PP is known to induce satiety but effects at the level of the endocrine pancreas are less well characterized. In addition, rapid metabolism of PP by dipeptidyl peptidase-4 (DPP-4) limits the investigation of the effects of the native peptide. Therefore, in the present study, five novel amino acid substituted and/or fatty acid derivatized PP analogs were synthesized, namely [P3]PP, [K13Pal]PP, [P3,K13Pal]PP, [N-Pal]PP, and [N-Pal,P3]PP, and their impact on pancreatic beta-cell function, as well as appetite regulation and glucose homeostasis investigated. All PP analogs displayed increased resistance to DPP-4 degradation. In addition, all peptides inhibited alanine-induced insulin secretion from BRIN-BD11 beta cells. Native PP and related analogs (10-8 and 10-6 M), and especially [P3]PP and [K13Pal]PP, significantly protected against cytokine-induced beta-cell apoptosis and promoted cellular proliferation, with effects dependent on the NPY4R for all peptides barring [N-Pal,P3]PP. In mice, all peptides, except [N-Pal]PP and [N-Pal,P3]PP, evoked a dose-dependent (25, 75, and 200 nmol/kg) suppression of appetite, with native PP and [P3]PP further augmenting glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) induced reductions of food intake. The PP peptides had no obvious detrimental effect on glucose tolerance and they did not noticeably impair the glucose-regulatory actions of GLP-1 or CCK. In conclusion, Pro3 amino acid substitution of PP, either alone or together with mid-chain acylation, creates PP analogs with benefits on beta-cell rest, islet cell turnover, and energy regulation that may be applicable to the treatment of diabetes and obesity.

8.
Life Sci ; 346: 122645, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38614297

RESUMO

The increasing global prevalence and associated comorbidities need innovative approaches for type 2 diabetes mellitus (T2DM) prevention and treatment. Genetics contributes significantly to T2DM susceptibility, and genetic counseling is significant in detecting and informing people about the diabetic risk. T2DM is also intricately linked to overnutrition and obesity, and nutritional advising is beneficial to mitigate diabetic evolution. However, manipulating pancreatic cell plasticity and transdifferentiation could help beta cell regeneration and glucose homeostasis, effectively contributing to the antidiabetic fight. Targeted modulation of transcription factors is highlighted for their roles in various aspects of pancreatic cell differentiation and function, inducing non-beta cells' conversion into functional beta cells (responsive to glucose). In addition, pharmacological interventions targeting specific receptors and pathways might facilitate cell transdifferentiation aiming to maintain or increase beta cell mass and function. However, the mechanisms underlying cellular reprogramming are not yet well understood. The present review highlights the primary transcriptional factors in the endocrine pancreas, focusing on transdifferentiation as a primary mechanism. Therefore, islet cell reprogramming, converting one cell type to another and transforming non-beta cells into insulin-producing cells, depends, among others, on transcription factors. It is a promising fact that new transcription factors are discovered every day, and their actions on pancreatic islet cells are revealed. Exploring these pathways associated with pancreatic development and islet endocrine cell differentiation could unravel the molecular intricacies underlying transdifferentiation processes, exploring novel therapeutic strategies to treat diabetes. The medical use of this biotechnology is expected to be achievable within a short time.

9.
J Colloid Interface Sci ; 667: 54-63, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38615623

RESUMO

Type 1 diabetes mellitus (T1DM) is a chronic disease affecting millions worldwide. Insulin therapy is currently the golden standard for treating T1DM; however, it does not restore the normal glycaemic balance entirely, which increases the risk of secondary complications. Beta-cell therapy may be a possible way of curing T1DM and has already shown promising results in the clinic. However, low retention rates, poor cell survival, and limited therapeutic potential are ongoing challenges, thus increasing the need for better cell encapsulation devices. This study aimed to develop a mechanically reinforced vascular endothelial growth factor (VEGF)-delivering encapsulation device suitable for beta cell encapsulation and transplantation. Poly(l-lactide-co-ε-caprolactone) (PLCL)/gelatin methacryloyl (GelMA)/alginate coaxial nanofibres were produced using electrospinning and embedded in an alginate hydrogel. The encapsulation device was physically and biologically characterised and was found to be suitable for INS-1E beta cell encapsulation, vascularization, and transplantation in terms of its biocompatibility, porosity, swelling ratio and mechanical properties. Lastly, VEGF was incorporated into the hydrogel and the release kinetics and functional studies revealed a sustained release of bioactive VEGF for at least 14 days, making the modified alginate system a promising candidate for improving the beta cell survival after transplantation.

10.
Int J Food Sci Nutr ; : 1-4, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659170

RESUMO

Nesfatin concentrations are positively correlated with beta cell function. However, it is unclear whether diet composition mediates this relationship. We recruited 27 overweight individuals who practiced Orthodox fasting (OF), a subset of the Mediterranean diet (MedDiet), for 7 weeks. Fourteen overweight people who practiced 16:8 time-restricted eating served as control group. Anthropometric parameters, biochemical data and adipokine levels were evaluated at baseline and after the end of the diet period (7 weeks from baseline). Subsequently, participants were asked to return to their usual eating plans, and an additional evaluation was performed 5 weeks after the end of the research diets (12 weeks from baseline). We observed a significant and negative correlation between HOMA-B and nesfatin values at 12 weeks, only in the OF group (r = -0.455, p = 0.01). In conclusion, returning to normal eating habits after 7 weeks of strict adherence to MedDiet affects the homeostatic balance between insulin secretion and nesfatin.

11.
Cell Metab ; 36(4): 745-761.e5, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569471

RESUMO

There is considerable heterogeneity in the cardiometabolic abnormalities associated with obesity. We evaluated multi-organ system metabolic function in 20 adults with metabolically healthy obesity (MHO; normal fasting glucose and triglycerides, oral glucose tolerance, intrahepatic triglyceride content, and whole-body insulin sensitivity), 20 adults with metabolically unhealthy obesity (MUO; prediabetes, hepatic steatosis, and whole-body insulin resistance), and 15 adults who were metabolically healthy lean. Compared with MUO, people with MHO had (1) altered skeletal muscle biology (decreased ceramide content and increased expression of genes involved in BCAA catabolism and mitochondrial structure/function); (2) altered adipose tissue biology (decreased expression of genes involved in inflammation and extracellular matrix remodeling and increased expression of genes involved in lipogenesis); (3) lower 24-h plasma glucose, insulin, non-esterified fatty acids, and triglycerides; (4) higher plasma adiponectin and lower plasma PAI-1 concentrations; and (5) decreased oxidative stress. These findings provide a framework of potential mechanisms responsible for MHO and the metabolic heterogeneity of obesity. This study was registered at ClinicalTrials.gov (NCT02706262).


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Síndrome Metabólica , Obesidade Metabolicamente Benigna , Adulto , Humanos , Obesidade/metabolismo , Triglicerídeos , Síndrome Metabólica/metabolismo , Índice de Massa Corporal , Fatores de Risco
12.
Cureus ; 16(3): e55771, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38586652

RESUMO

Latent autoimmune diabetes of adults (LADA) is a form of autoimmune diabetes that typically occurs in adulthood and has intermediate characteristics between type 1 and type 2 diabetes. To optimize the diagnostic and therapeutic approach, recently, a subclassification of LADA has been proposed based on some clinical features, antibodies, and beta cellular function at onset. In this paper, we expose an interesting case showing the effectiveness of early treatment with a glucagon-like peptide receptor agonist (semaglutide) in maintaining long-term good glycemic control and associated with the preservation of beta-cell function over a five-year observation period in a young woman with LADA.

14.
Diabetologia ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517484

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes is an heterogenous condition. Characterising factors explaining differences in an individual's clinical course and treatment response will have important clinical and research implications. Our aim was to explore type 1 diabetes heterogeneity, as assessed by clinical characteristics, autoantibodies, beta cell function and glycaemic outcomes, during the first 12 months from diagnosis, and how it relates to age at diagnosis. METHODS: Data were collected from the large INNODIA cohort of individuals (aged 1.0-45.0 years) newly diagnosed with type 1 diabetes, followed 3 monthly, to assess clinical characteristics, C-peptide, HbA1c and diabetes-associated antibodies, and their changes, during the first 12 months from diagnosis, across three age groups: <10 years; 10-17 years; and ≥18 years. RESULTS: The study population included 649 individuals (57.3% male; age 12.1±8.3 years), 96.9% of whom were positive for one or more diabetes-related antibodies. Baseline (IQR) fasting C-peptide was 242.0 (139.0-382.0) pmol/l (AUC 749.3 [466.2-1106.1] pmol/l × min), with levels increasing with age (p<0.001). Over time, C-peptide remained lower in participants aged <10 years but it declined in all age groups. In parallel, glucose levels progressively increased. Lower baseline fasting C-peptide, BMI SD score and presence of diabetic ketoacidosis at diagnosis were associated with lower stimulated C-peptide over time. HbA1c decreased during the first 3 months (p<0.001), whereas insulin requirement increased from 3 months post diagnosis (p<0.001). CONCLUSIONS/INTERPRETATION: In this large cohort with newly diagnosed type 1 diabetes, we identified age-related differences in clinical and biochemical variables. Of note, C-peptide was lower in younger children but there were no main age differences in its rate of decline.

15.
Pharmacol Res ; 203: 107157, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38531504

RESUMO

There are multiple disease-modifying immunotherapies showing the potential of preventing or delaying the progression of type 1 diabetes (T1D). We designed and performed this systematic review and meta-analysis to gain an overview of what a role immunotherapy plays in the treatment of T1D. We searched PubMed, Embase and Cochrane Central Register of Controlled Trials (CENTRAL) from inception to December 2023. We included clinical trials of immunotherapy conducted in patients with T1D that reported the incidence of hypoglycemia or changes from baseline in at least one of following outcomes: 2 h and 4 h mixed-meal-stimulated C-peptide area under the curve (AUC), fasting C-peptide, daily insulin dosage, glycated hemoglobin (HbA1c) and fasting plasma glucose (FPG). The results were computed as the weighted mean differences (WMDs) or odds ratios (ORs) and 95% confidence intervals (CIs) in random-effect model. In all, 34 clinical trials were included. When compared with control groups, 2 h C-peptide AUC was marginally higher in patient treated with nonantigen-based immunotherapies (WMD, 0.04nmol/L, 95% CI, 0.00-0.09 nmol/L, P=0.05), which was mainly driven by the effects of T cell-targeted therapy. A greater preservation in 4 h C-peptide AUC was observed in patients with nonantigen-based immunotherapies (WMD, 0.10nmol/L, 95% CI, 0.04-0.16 nmol/L, P=0.0007), which was mainly driven by the effects of tumor necrosis factor α (TNF-α) inhibitor and T cell-targeted therapy. After excluding small-sample trials, less daily insulin dosage was observed in patient treated with nonantigen-based immunotherapies when compared with control groups (WMD, -0.07units/kg/day, 95% CI, -0.11 to -0.03units/kg/day, P=0.0004). The use of antigen-based immunotherapies was also associated with a lower daily insulin dosage versus control groups (WMD, -0.11units/kg/day, 95% CI, -0.23 to -0.00units/kg/day, P=0.05). However, changes of HbA1c or FPG were comparable between nonantigen-based immunotherapies or antigen-based immunotherapies and control groups. The risk of hypoglycemia was not increased in patients treated with nonantigen-based immunotherapies or patients treated with antigen-based immunotherapies when compared with control groups. In conclusion, nonantigen-based immunotherapies were associated with a preservation of 2 h and 4 h C-peptide AUC in patients with T1D when compared with the controls, which was mainly driven by the effects of TNF-a inhibitor and T cell-targeted therapy. Both nonantigen-based immunotherapies and antigen-based immunotherapies tended to reduce the daily insulin dosage in patients with T1D when compared with the controls. However, they did not contribute to a substantial improvement in HbA1c or FPG. Both nonantigen-based immunotherapies and antigen-based immunotherapies were well tolerated with not increased risk of hypoglycemia in patients with T1D.

16.
Indian J Endocrinol Metab ; 28(1): 71-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533283

RESUMO

Introduction: The aim of this study was to compare insulin sensitivity, islet cell function, and incretin axes in pregnant subjects with GDM and normal healthy controls. Methods: Pregnant women at 24 to 28 weeks of gestation were subjected to a 75 g oral glucose tolerance test (OGTT). Samples for glucose, insulin, glucagon, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) were collected at 0, 30, 60, and 120 min during the OGTT. The Matsuda index (MI) and insulin secretion and sensitivity index-2 (ISSI-2) were assessed. The glucagon suppression index (GSI) was calculated along with the area under the curve (AUC) for glucose, insulin, glucagon, GLP-1, and GIP. Results: A total of 48 pregnant women (25 GDM and 23 controls) were finally analysed. The MI and ISSI-2 were low in the GDM group [4.31 vs. 5.42; P = 0.04], [1.99 vs. 3.18, P ≤ 0.01] respectively). Total AUCglucagon was higher in the GDM group (7411.7 vs. 6320.1, P = 0.02). GSI30 was significantly lower in the GDM group (-62.6 vs. -24.7, P = 0.03). Fasting GLP-1 levels were low in GDM women (17.3 vs. 22.2, P = 0.04). The total AUCGLP-1 positively correlated with total GSI in the GDM group. Conclusion: Asian-Indian GDM women have high insulin insensitivity, islet cell dysfunction, and low fasting GLP-1. Incretin axis dysfunction plays a potential role in their islet cell dysfunction.

17.
Cell Rep ; 43(4): 113992, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38536815

RESUMO

Insulin is packaged into secretory granules that depart the Golgi and undergo a maturation process that involves changes in the protein and lipid composition of the granules. Here, we show that insulin secretory granules form physical contacts with the endoplasmic reticulum and that the lipid exchange protein oxysterol-binding protein (OSBP) is recruited to these sites in a Ca2+-dependent manner. OSBP binding to insulin granules is positively regulated by phosphatidylinositol-4 (PI4)-kinases and negatively regulated by the PI4 phosphate (PI(4)P) phosphatase Sac2. Loss of Sac2 results in excess accumulation of cholesterol on insulin granules that is normalized when OSBP expression is reduced, and both acute inhibition and small interfering RNA (siRNA)-mediated knockdown of OSBP suppress glucose-stimulated insulin secretion without affecting insulin production or intracellular Ca2+ signaling. In conclusion, we show that lipid exchange at endoplasmic reticulum (ER)-granule contact sites is involved in the exocytic process and propose that these contacts act as reaction centers with multimodal functions during insulin granule maturation.

18.
Front Endocrinol (Lausanne) ; 15: 1340346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444582

RESUMO

Insulin secretion within 30 minutes of nutrient ingestion is reduced in people with cystic fibrosis (PwCF) and pancreatic insufficiency and declines with worsening glucose tolerance. The glucose potentiated arginine (GPA) test is validated for quantifying ß-cell secretory capacity as an estimate of functional ß-cell mass but requires technical expertise and is burdensome. This study sought to compare insulin secretion during mixed-meal tolerance testing (MMTT) to GPA-derived parameters in PwCF. Methods: Secondary data analysis of CF-focused prospective studies was performed in PwCF categorized as 1) pancreatic insufficient [PI-CF] or 2) pancreatic sufficient [PS-CF] and in 3) non-CF controls. MMTT: insulin secretory rates (ISR) were derived by parametric deconvolution using 2-compartment model of C-peptide kinetics, and incremental area under the curve (AUC) was calculated for 30, 60 and 180-minutes. GPA: acute insulin (AIR) and C-peptide responses (ACR) were calculated as average post-arginine insulin or C-peptide response minus pre-arginine insulin or C-peptide under fasting (AIRarg and ACRarg), ~230 mg/dL (AIRpot and ACRpot), and ~340 mg/dL (AIRmax and ACRmax) hyperglycemic clamp conditions. Relationships of MMTT to GPA parameters were derived using Pearson's correlation coefficient. Predicted values were generated for MMTT ISR and compared to GPA parameters using Bland Altman analysis to assess degree of concordance. Results: 85 PwCF (45 female; 75 PI-CF and 10 PS-CF) median (range) age 23 (6-56) years with BMI 23 (13-34) kg/m2, HbA1c 5.5 (3.8-10.2)%, and FEV1%-predicted 88 (26-125) and 4 non-CF controls of similar age and BMI were included. ISR AUC30min positively correlated with AIRarg (r=0.55), AIRpot (r=0.62), and AIRmax (r=0.46) and with ACRarg (r=0.59), ACRpot (r=0.60), and ACRmax (r=0.51) (all P<0.001). ISR AUC30min strongly predicted AIRarg (concordance=0.86), AIRpot (concordance=0.89), and AIRmax (concordance=0.76) at lower mean GPA values, but underestimated AIRarg, AIRpot, and AIRmax at higher GPA-defined ß-cell secretory capacity. Between test agreement was unaltered by adjustment for study group, OGTT glucose category, and BMI. Conclusion: Early-phase insulin secretion during MMTT can accurately predict GPA-derived measures of ß-cell function and secretory capacity when functional ß-cell mass is reduced. These data can inform future multicenter studies requiring reliable, standardized, and technically feasible testing mechanisms to quantify ß-cell function and secretory capacity.


Assuntos
Fibrose Cística , Feminino , Humanos , Adulto Jovem , Adulto , Secreção de Insulina , Peptídeo C , Estudos Prospectivos , Insulina , Arginina , Glucose
19.
Diabetologia ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512414

RESUMO

AIMS/HYPOTHESIS: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility, which we explore here by focusing on the imprinted gene Nnat (encoding neuronatin [NNAT]), which is required for normal insulin synthesis and secretion. METHODS: Single-cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing enhanced GFP under the control of the Nnat enhancer/promoter regions were generated for FACS of beta cells and downstream analysis of CpG methylation by bisulphite sequencing and RNA-seq, respectively. Animals deleted for the de novo methyltransferase DNA methyltransferase 3 alpha (DNMT3A) from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 AM and Cal-590 AM. Insulin secretion was measured using homogeneous time-resolved fluorescence imaging. RESULTS: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic datasets demonstrated the early establishment of Nnat-positive and -negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a subpopulation specialised for insulin production, and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialisation. CONCLUSIONS/INTERPRETATION: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes. DATA AVAILABILITY: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048465.

20.
Endocr Pract ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38519028

RESUMO

OBJECTIVE: Teplizumab has emerged as a potential disease-modifying drug in type 1 diabetes (T1D). This meta-analysis sought to summarize the therapeutic effect of teplizumab in newly diagnosed patients with T1D. METHODS: Randomized controlled trials involving patients with T1D receiving teplizumab in the intervention arm and placebo (or no active intervention) in the control arm were searched throughout the electronic databases. The primary outcome was the change in area under the curve of C-peptide levels from baseline. RESULTS: Seven reports from 6 studies involving 834 subjects met the inclusion criteria. Compared to teplizumab, greater reductions in area under the curve of C-peptide from the baseline values were observed in the control group after 6 months (mean difference [MD] 0.07 nmol/L [0.01, 0.13], P = .02), after 12 months (MD 0.07 nmol/L [0.04, 0.11], P = .0001), after 18 months (MD 0.10 nmol/L [0.06, 0.14], P < .00001), and after 24 months (MD 0.07 nmol/L [0.01, 0.14], P = .03) of interventions. Moreover, fewer patients treated with teplizumab had a decreased C-peptide response after 6 months (odds ratio [OR] 0.21), after 12 months (OR 0.17), after 18 months (OR 0.30), and after 24 months (OR 0.12) of treatment. The preservation of endogenous insulin production was supported by reduced use of exogenous insulin with maintenance of comparable glycemic control for up to 18 months post-treatment. Teplizumab imparted higher risks of grade 3 or higher adverse events, adverse events leading to study medication discontinuation, nausea, rash, and lymphopenia. CONCLUSION: The results of the meta-analysis support teplizumab as a promising disease-modifying therapy for newly diagnosed T1D.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...